ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Hirokazu Ohta, Takanari Ogata, Takeshi Yokoo, Michel Ougier, Jean-Paul Glatz, Bruno Fontaine, Laurent Breton
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 96-110
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT09-A4063
Articles are hosted by Taylor and Francis Online.
Fast reactor metal fuels containing minor actinides (MAs) Np, Am, and Cm and/or rare earths (REs) have been irradiated in the fast reactor PHÉNIX to examine the effects of adding those elements on metal fuel irradiation behavior. In this experiment, two MA-containing metal fuel pins, in which the test alloys U-19Pu-10Zr-2MA-2RE and U-19Pu-10Zr-5MA/U-19Pu-10Zr-5MA-5RE (wt%) were loaded into part of a standard U-19Pu-10Zr alloy fuel stack, and a reference fuel pin of U-19Pu-10Zr alloy without MAs or REs was set in an irradiation capsule. Two other capsules with this same configuration are also irradiated. Postirradiation examinations are conducted at ~2.5, ~7, and ~11 at.% burnup. For the low-burnup fuel pins, nondestructive tests after irradiation have been performed, and the integrity of the pins was confirmed. The irradiation behavior of MA-containing metal fuels up to 2.5 at.% burnup was analyzed using the ALFUS code. The calculation results, such as the axial swelling distribution of a fuel slug or the extrusion behavior of bond sodium to the gas plenum, are consistent with the measurement data regardless of the addition of MAs and REs to the U-Pu-Zr alloy fuels. This observation result indicates that the macroscopic irradiation behavior of U-Pu-Zr fuels containing MAs and REs of 5 wt% or less is similar to that of U-Pu-Zr fuels up to ~2.5 at.% burnup.