ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Anil Kumar Sharma, Sanjay Kumar Das, J. Harvey
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 43-52
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT09-A4061
Articles are hosted by Taylor and Francis Online.
In the Prototype Fast Breeder Reactor, a core catcher is provided as an in-vessel core debris retention device to collect, support, and maintain in subcritical configuration the relocated core debris generated from fuel melting as a consequence of a severe accident scenario. It acts as a barrier to prevent settling of debris onto the main vessel and helps to maintain the main vessel temperature within acceptable creep range. In the Safety Engineering Division of the Indira Gandhi Center for Atomic Research, model experiments are carried out in water using a geometrically similar model to understand natural convective heat transfer and fluid flow in and around the core catcher below the grid plate. Influences of cylindrical and annular central openings (chimney) through the core catcher assembly are investigated to assess their relative thermal performances. Resistive heating elements are used as heat source to simulate debris decay heat on the core catcher. Series of experiments were carried out with both configurations. Temperatures were monitored at critical positions and compared with numerical evaluation. Flow fields and isotherms are analyzed with a computational model to understand the fluid flow and heat transfer characteristics inside the cavity along with experimental data for specified steady-state temperatures on the heat source plate. Numerical results are found to be in good agreement with those obtained from the experiments. The combined efforts of numerical and experimental work conclude that core catcher assembly with annular chimney is better in terms of natural convection heat removal capability.