ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Former NRC commissioners lend support to efforts to eliminate mandatory hearings
A group of nine former nuclear regulatory commissioners sent a letter Wednesday to the current Nuclear Regulatory Commission members lending support to efforts to get rid of mandatory hearings in the licensing process, which should speed up the process by three to six months and save millions of dollars.
Meng Yue, Lap-Yan Cheng, Robert A. Bari
Nuclear Technology | Volume 165 | Number 1 | January 2009 | Pages 1-17
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT09-A4058
Articles are hosted by Taylor and Francis Online.
The purpose of this study is to evaluate the proliferation resistance characteristics for different fuel cycle arrangements in the context of a global nuclear energy system using a Markov approach, which is capable of modeling complex systems and providing probabilistic measures. A technique that groups a set of reactors similar to each other and yet captures major fuel cycle features for proliferation study is proposed as an enhancement to the Markov approach to reduce the modeling complexity. In evaluating impacts on proliferation, both the amounts of total materials around the world and the amounts of materials that are used by the host state are considered. Proliferation concerns are represented based on the proliferation resistance measures of fuel cycles. In addition to representing proliferation impact in terms of proliferation success probability, a measure of proliferation risk is also introduced by using a product of the proliferation success probability and the material type index that represents the consequence of the proliferation. Sensitivity analyses are performed by varying the scale of the nuclear energy system owned and operated by a host state.