ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Ray S. Booth
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 217-227
Technical Paper | doi.org/10.1080/00295450.2017.1299494
Articles are hosted by Taylor and Francis Online.
Functionals derived from the finite Laplace transforms of time moments of experimental data are used to fit these data to exponential functions. The functionals provide linear relationships for individually determining parameter values successively. This new and unique fitting method is first derived and then applied to data containing up to four exponentials to demonstrate its capabilities. Advantages of this fitting procedure include the following. (1) Parameters of the fit can be determined from the data region where they are most important by a wide verity of methods, including conventional ones. (2) Fitting algorithms are available that are simple to program; use conventional “stripping techniques”; are quite robust; and have been tested for a wide range in the number of data points, statistical errors, data ranges, and parameter values. (3) Fitting algorithms are included that use the conventional correlation coefficient of two expressions to fit data with even or uneven time intervals. (4) Decay constants and their associated magnitudes are determined separately and independently from different functionals. (5) Each iteration of the fit requires relatively few computations, usually only selected integrals, which can be completed quite rapidly. (6) Parameter errors can be estimated by conventional techniques.