ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Gilles J. Youinou
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 202-216
Technical Paper | doi.org/10.1080/00295450.2017.1305191
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a neutronics analysis related to the homogeneous recycling of different mixtures of transuranic elements (transuranics) (TRU) in pressurized water reactors (PWRs) loaded with mixed oxide (MOX) fuel using enriched uranium instead of depleted uranium (UenrO2-TRUO2, i.e., MOX-EU). It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely, the use of reprocessed uranium. From a neutronics point of view, it is possible to multirecycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one-third and two-thirds of the fleet. Recycling neptunium and americium with plutonium significantly decreases the decay heat of the waste stream between 100 to 1000 years compared to that of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235U, and recycling it makes a major difference in the natural uranium needs. For example, at equilibrium, a PWR fleet recycling its plutonium, neptunium, and americium in MOX-EU needs 28% more natural uranium than a reference UO2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19% less if the reprocessed uranium is recycled back in the reactors, i.e., a 47% difference. Reenriching the reprocessed uranium is not necessary.