ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Nuclear Dirigo
On April 22, 1959, Rear Admiral George J. King, superintendent of the Maine Maritime Academy, announced that following the completion of the 1960 training cruise, cadets would begin the study of nuclear engineering. Courses at that time included radiation physics, reactor control and instrumentation, reactor theory and engineering, thermodynamics, shielding, core design, reactor maintenance, and nuclear aspects.
Gilles J. Youinou
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 202-216
Technical Paper | doi.org/10.1080/00295450.2017.1305191
Articles are hosted by Taylor and Francis Online.
This paper presents the results of a neutronics analysis related to the homogeneous recycling of different mixtures of transuranic elements (transuranics) (TRU) in pressurized water reactors (PWRs) loaded with mixed oxide (MOX) fuel using enriched uranium instead of depleted uranium (UenrO2-TRUO2, i.e., MOX-EU). It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely, the use of reprocessed uranium. From a neutronics point of view, it is possible to multirecycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one-third and two-thirds of the fleet. Recycling neptunium and americium with plutonium significantly decreases the decay heat of the waste stream between 100 to 1000 years compared to that of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235U, and recycling it makes a major difference in the natural uranium needs. For example, at equilibrium, a PWR fleet recycling its plutonium, neptunium, and americium in MOX-EU needs 28% more natural uranium than a reference UO2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19% less if the reprocessed uranium is recycled back in the reactors, i.e., a 47% difference. Reenriching the reprocessed uranium is not necessary.