ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Hanford begins removing waste from 24th single-shell tank
The Department of Energy’s Office of Environmental Management said crews at the Hanford Site near Richland, Wash., have started retrieving radioactive waste from Tank A-106, a 1-million-gallon underground storage tank built in the 1950s.
Tank A-106 will be the 24th single-shell tank that crews have cleaned out at Hanford, which is home to 177 underground waste storage tanks: 149 single-shell tanks and 28 double-shell tanks. Ranging from 55,000 gallons to more than 1 million gallons in capacity, the tanks hold around 56 million gallons of chemical and radioactive waste resulting from plutonium production at the site.
Ruixian Fang, Dan G. Cacuci, Madalina C. Badea
Nuclear Technology | Volume 198 | Number 2 | May 2017 | Pages 132-192
Technical Paper | doi.org/10.1080/00295450.2017.1294430
Articles are hosted by Taylor and Francis Online.
Based on the adjoint sensitivity models for the saturated case of the counter-flow cooling tower developed in the accompanying Part I, this work computed and analyzed the sensitivities, with respect to all of the 52 model parameters, of the following responses (i.e., model outputs of interest): the outlet air temperature, outlet water temperature, outlet water mass flow rate, and outlet air relative humidity. The sensitivity results indicate that, in general, all these response of interest are mostly sensitive to the boundary-related parameters (e.g., Ta,in, Tdb, Tw,in, Tdp, mw,in, and ωin) and also somewhat sensitive to those parameters (e.g., a0, a1, a1f, a0,cpa, a1,dav, kair, and fht) that directly relate to the heat and mass transfer terms in the cooling tower model. The rankings of these parameters depend on the respective model responses. With the sensitivities known, the propagation of the uncertainties in the model parameters to the uncertainties in the model outputs are readily obtained. The uncertainties associated with the model outputs were reduced by applying the “predictive modeling for coupled multiphysics systems” (PM_CMPS) methodology. For a typical case studied in this work, the uncertainties associated with the model outputs of the outlet air temperature, outlet water temperature, and outlet air relative humidity, are reduced by 22%, 38%, and 68%, respectively. Moreover, the PM_CMPS methodology also generated optimal best-estimate nominal values for the model parameters and model responses. It also improved (i.e., reduced) the uncertainties associated with model parameters through the process of model calibration, as shown in the paper. The results presented in this work demonstrate that the PM_CMPS methodology reduces the predicted standard deviations to values that are smaller than either the computed or the experimentally measured ones, even for responses (e.g., the outlet water flow rate) for which no measurements are available. These improvements stem from the global characteristics of the PM_CMPS methodology, which combines all of the available information simultaneously in phase-space, as opposed to combining it sequentially, as in current data assimilation procedures.