ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
ORNL to partner with Type One, UTK on fusion facility
Yesterday, Oak Ridge National Laboratory announced that it is in the process of partnering with Type One Energy and the University of Tennessee–Knoxville. That partnership will have one primary goal: to establish a high-heat flux facility (HHF) at the Tennessee Valley Authority’s Bull Run Energy Complex in Clinton, Tenn.
Michael Plagge, Ulrich Krause, Enrico Da Riva, Christoph Schäfer, Doris Forkel-Wirth
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 43-52
Technical Paper | doi.org/10.1080/00295450.2017.1291227
Articles are hosted by Taylor and Francis Online.
Being a particle physics laboratory, the European Organization for Nuclear Research (CERN) plans, constructs, and maintains installations emitting ionizing radiation during operation. Activation of present material is a consequence. Hence, fire scenarios for certain CERN installations must take into account the presence of radioactive material. Releases of gaseous, liquid, or solid combustion products, e.g., attached to aerosols, are taken so far into account by a worst case approach. Scenarios taking place in underground installations assume hence a smoke transport coefficient of 100% of release toward the surface level, independent of the local geometry. For a radioactive inventory identified in a certain fire load, this results in a conservative release.
To overcome this conservative worst case approach, a computational fluid dynamics model based on FM Global’s fireFoam 2.2.x is proposed. Its Lagrangian library was modified in order to provide aerosol release and deposition information based on more detailed interaction data between Lagrangian particles and their surrounding geometry. Results are shown for a CERN-typical large-scale experimental cavern placed 100 m below surface level. A simple diffusion burner is modeled inside the cavern to create a thermal plume emerging from a 1.5-MW fire over 14 min. Lagrangian particles are used to model aerosols with an aerodynamic diameter of 1, 10, and 100 μm, injected into the emerging thermal plume. Results for particle release and deposition vary according to aerodynamic diameter. In the present case, maximums of ~32% and 39% are found for 1- and 10-μm particles, respectively, being released to the surface level.