ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Daniel M. Wachs, Dennis D. Keiser, Douglas L. Porter, Naoyuki Kisohara
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 465-473
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT08-A4038
Articles are hosted by Taylor and Francis Online.
After 30 yr of operation, the Experimental Breeder Reactor II (EBR-II) Superheater 710 at Argonne National Laboratory-West (now Idaho National Laboratory) was decommissioned. As part of its postservice examination, four duplex tube sections were removed and Charpy impact testing was performed to characterize the crack-arresting ability of nickel-bonded tube interfaces. A scanning electron microscopy (SEM) examination was also performed to characterize and identify changes in bond material microstructure. From room temperature to 400°C, all samples demonstrated ductility and crack-stopping ability similar to that exhibited by beginning-of-life samples. However, at a low temperature (-50°C), samples removed from the lower region of the superheater (near the sodium inlet) failed while those from the upper region (near the sodium outlet) did not. SEM analysis revealed that all the tube-tube interfaces showed evidence of iron diffusion into the nickel braze, which resulted in the formation of a multiphase diffusion structure. Yet, significant void formation was only observed in the bond layer of the tubes removed from the lower region. This may be due to a change in the crystal microstructure of one of the phases within the bond layer that occurs in the 350 to 450°C temperature range, which results in a lower density and the formation of porosity. Apparently, only the samples from the higher-temperature region were exposed to this transition temperature, and the resulting large voids that developed acted as stress concentrators that led to low-temperature embrittlement and failure of the Charpy impact specimens.