ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Chenglong Wang, Kaichao Sun, Lin-wen Hu, Dalin Zhang, Wenxi Tian, Suizheng Qiu, G. H. Su
Nuclear Technology | Volume 198 | Number 1 | April 2017 | Pages 1-16
Technical Paper | doi.org/10.1080/00295450.2017.1294011
Articles are hosted by Taylor and Francis Online.
A transportable fluoride-salt-cooled high-temperature reactor (TFHR) design with 20-MW(thermal) rated power and 18-month fuel cycle is proposed for off-grid applications. One of the design goals of the compact reactor core is potential transport by truck, rail, or air. Full-core thermal-hydraulic analyses and improvements using three-dimensional computational fluid dynamics (CFD) were performed previously to demonstrate the feasibility of a TFHR design at a nominal power of 20 MW(thermal). In this paper, the best-estimate system code Reactor Excursion Leak Analysis Program (RELAP5-3D) is adopted to study the transient behavior of this TFHR design and the safety characteristics of the primary loop system during accident conditions. The modeling results of the steady state were verified using CFD results with consideration of radial heat conduction between heat transfer unit cells. Four most challenging accidents of anticipated transient without scram were analyzed, as well as parametric studies of some key factors. These accidents include unprotected reactivity insertion accident (URIA), unprotected loss of heat sink (ULOHS), unprotected loss of flow (ULOF), and a combination accident of ULOF and ULOHS. The results indicate that transient temperature limits are not exceeded during the most severe accidents. They indicate satisfactory transient performance of the TFHR design. The transient temperature limit of structure material Hastelloy N, based on embrittlement phenomena, poses the most limiting constraint due to the small temperature margin of about 20 K in the accident combination of ULOF and ULOHS. Overall, TFHR is a sound reactor design from a thermal-hydraulic viewpoint.