ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
Fusion Science and Technology
Latest News
Fund to spur new nuclear projects launched in U.K.
The U.K. government is providing £120 million (about $149.9 million) for a new fund designed to support the development of new nuclear energy projects, stimulate competition in the industry, and unlock investment.
Daniel W. Hudson, Mohammad Modarres
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 227-247
Technical Paper | dx.doi.org/10.1080/00295450.2016.1273714
Articles are hosted by Taylor and Francis Online.
In 1986 the U.S. Nuclear Regulatory Commission (USNRC) implemented a safety goal policy in response to the 1979 Three Mile Island accident. This policy addresses the question, “How safe is safe enough?” by specifying quantitative health objectives (QHOs) for comparison with average individual early fatality and latent cancer fatality risk results computed from nuclear power plant (NPP) probabilistic risk assessments (PRAs). Comparisons of PRA results to the QHOs or other subsidiary numerical objectives are used to determine whether proposed regulatory actions should be rejected based on potential safety benefit relative to the level of residual risk to the public, before performing detailed cost-benefit analyses to determine whether they could be justified on their net value basis. Lessons learned from recent operational experience— including the 2011 Fukushima accident—indicate that concurrent accidents involving multiple units at a shared site can occur with non-negligible frequency. Yet, risk contributions from such scenarios are excluded by policy from safety goal evaluations for the nearly 60% of the U.S. NPP sites that include multiple units. The objectives of this paper are to (1) present an approach for estimating multiple unit risk metrics for comparison with the safety goal QHOs using accident scenarios from the State-of-the-Art Reactor Consequence Analyses (SOARCA) Project; and (2) using this approach, evaluate the effects of including risk contributions from concurrent multiunit accidents in safety goal evaluations. The approach is demonstrated using a two-unit case study involving two representative NPP sites that are each comprised of two co-located operating reactor units. This paper (1) summarizes results and insights obtained from the two-unit case study; (2) describes additional considerations for applying methods to sites comprised of two or more units, including other major radiological sources; and (3) identifies potential areas for further research.