ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
From Capitol Hill: Nuclear is back, critical for America’s energy future
The U.S. House Energy and Commerce Subcommittee on Energy convened its first hearing of the year, “American Energy Dominance: Dawn of the New Nuclear Era,” on January 7, where lawmakers and industry leaders discussed how nuclear energy can help meet surging electricity demand driven by artificial intelligence, data centers, advanced manufacturing, and national security needs.
Yang-Hyun Koo, Byung-Ho Lee, Jae-Yong Oh, Kun-Woo Song
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 337-347
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A4031
Articles are hosted by Taylor and Francis Online.
Based on the high-burnup fuel data available in open literature, a conservative width of high-burnup structure (HBS) in light water reactor UO2 fuel, which can be used for fuel performance and accident analysis or assessment of spent fuel under geological disposal conditions, is proposed as a function of pellet average burnup. For pellet average burnup of 30 to 60 GWd/t U, where the HBS generally increases with burnup because of the accumulation of irradiation damage, a conservative HBS width is given by wHBS = 13.3 (buavg - 30), where wHBS is the HBS width in m and buavg is the pellet average burnup in GWd/t U. For pellet average burnup of 60 to 75 GWd/t U, where microstructural damage caused by irradiation is partly annealed, a conservative HBS width is expressed by wHBS = 2.02 exp(buavg /11.35). In the case of pellet average burnup above 75 GWd/t U up to at least 100 GWd/t U, the HBS width does not exceed some limiting value of 1.5 mm because high temperature in the central region of the fuel pellet has caused an extensive annealing of irradiation damage. In addition, because of significant fission gas release during irradiation up to high burnup, HBS formation might not have expanded to the pellet region whose temperature was lower than the threshold one. Therefore, for this burnup range, a conservative HBS width is given as wHBS = 1500 m.