ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Christopher S. Handwerk, Michael J. Driscoll, Pavel Hejzlar
Nuclear Technology | Volume 164 | Number 3 | December 2008 | Pages 320-336
Technical Paper | Fission Reactors | doi.org/10.13182/NT08-A4030
Articles are hosted by Taylor and Francis Online.
The gas-cooled fast reactor (GFR) has received increased attention in the past decade under the impetus provided by the Generation-IV International Forum. The GFR given principal attention is a version using helium as a coolant. However, the work presented here is for a core using supercritical carbon dioxide (S-CO2) as a coolant, in a direct Brayton cycle, which has comparable cycle efficiency (~45%) at much lower temperatures (e.g., 650°C versus 850°C) than helium-based cycles.A reactor core for use in this direct cycle S-CO2 GFR has been designed that satisfies established neutronic and thermal-hydraulic steady-state design criteria, while concurrently supporting the Gen-IV criteria of sustainability, safety, proliferation, and economics. Use of innovative tube-in-duct fuel has been central to accomplishing this objective, as it provides a higher fuel volume fraction and lower fuel temperatures and pressure drop when compared to traditional pin-type fuel. Further, this large fuel volume fraction allows for a large enough heavy metal loading for a sustainable core lifetime without the need for external blankets, enhancing the proliferation resistance of such an approach. It was not possible to achieve a sustainable core (i.e., conversion ratio = 1.0) using conventional pin-type oxide fuel.Use of beryllium oxide (BeO) as a diluent is explored as a means for both power shaping and coolant void reactivity (CVR) reduction, similar to the studies carried out earlier for the sodium-cooled European Fast Reactor. Results show that relatively flat power profiles can be maintained throughout a batch-loaded "battery" core life of more than 15 yr using a combination of fissile concentration and diluent zoning, due to the moderating effect of the BeO. Combining BeO diluent with the innovative strategy of using a thick volume of S-CO2 coolant in the radial reflector yields negative CVR values throughout core life, a rare, if not unique accomplishment for fast reactors. The ability to maintain negative CVR comes from a combination of the effects of spectral softening due to the BeO diluent and the enhanced leakage upon voiding of the S-CO2 radial reflector.