ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Noritoshi Minami, Toshiaki Chikusa, Michio Murase
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 265-277
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A4025
Articles are hosted by Taylor and Francis Online.
Different flow patterns of steam forward flow and nitrogen reverse flow in U-tubes were observed in the reflux condensation experiments using the Bethsy facility with 34 U-tubes. In this study, the behavior was calculated using RELAP5/MOD3.2 with two and three flow channels of U-tubes. By the modification of the weighting factor for the calculation of friction coefficients, the nitrogen reverse flow was successfully calculated. In the calculations changing the flow area ratio of two flow channels, the number of active U-tubes with steam forward flow was predicted using the assumption that flow was most stable in the case with the maximum nitrogen recirculation flow rate, and it agreed rather well with the observed number of active U-tubes (19 to 24 U-tubes) within the difference of 4 U-tubes. In the calculations with three flow channels, without the assumption, the average of the ratios of active U-tubes in several calculations (four cases in this study) with different flow area ratios of the three flow channels gave good prediction of the ratio of active U-tubes. The results indicate the validity of the assumption that the flow with the maximum nitrogen recirculation flow rate may be the most stable and appear most probably among different numbers of active U-tubes.