ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Experimenters get access to NSUF facilities for irradiation effects studies
The Department of Energy’s Office of Nuclear Energy announced the recipients of “first call” 2025 Nuclear Science User Facilities (NSUF) Rapid Turnaround Experiment (RTE) awards on June 26. The 23 proposals selected from industry, national laboratories, and universities will receive a total of about $1.4 million. While each project is led by a different principal investigator, some call the same organization home. A total of 17 companies, labs, and universities are represented.
C. Mun, L. Cantrel, C. Madic
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 245-254
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4023
Articles are hosted by Taylor and Francis Online.
In the case of a hypothetical severe accident in a nuclear pressurized water reactor, the formation of radiotoxic RuO4(g) may occur in the reactor containment building, resulting from the interactions of ruthenium oxide deposits with the oxidizing medium induced by air radiolysis. Consequently, this gaseous ruthenium tetroxide may be dispersed into the environment; therefore, the determination of the ruthenium deposits behavior is of primary importance for nuclear safety studies. An experimental study, performed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), using a gamma irradiator cell (EPICUR facility at IRSN/Cadarache) has been carried out in order to obtain experimental data on these interactions. The results showed that radiolytic oxidation of ruthenium oxide deposits leads to the formation of gaseous ruthenium tetroxide to a significant extent. A comparison between the revolatilized Ru fractions obtained experimentally and those obtained by calculations based on the rate laws modeling ozone irradiation effect, established in previous studies, is presented. The disagreement observed is discussed. It appears that the oxidation resulting from air/steam radiolysis products is enhanced in comparison with pure ozone effect.