ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
C. Mun, L. Cantrel, C. Madic
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 245-254
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4023
Articles are hosted by Taylor and Francis Online.
In the case of a hypothetical severe accident in a nuclear pressurized water reactor, the formation of radiotoxic RuO4(g) may occur in the reactor containment building, resulting from the interactions of ruthenium oxide deposits with the oxidizing medium induced by air radiolysis. Consequently, this gaseous ruthenium tetroxide may be dispersed into the environment; therefore, the determination of the ruthenium deposits behavior is of primary importance for nuclear safety studies. An experimental study, performed by the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN), using a gamma irradiator cell (EPICUR facility at IRSN/Cadarache) has been carried out in order to obtain experimental data on these interactions. The results showed that radiolytic oxidation of ruthenium oxide deposits leads to the formation of gaseous ruthenium tetroxide to a significant extent. A comparison between the revolatilized Ru fractions obtained experimentally and those obtained by calculations based on the rate laws modeling ozone irradiation effect, established in previous studies, is presented. The disagreement observed is discussed. It appears that the oxidation resulting from air/steam radiolysis products is enhanced in comparison with pure ozone effect.