ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
C. P. Marcel, M. Rohde, T. H. J. J. Van der Hagen
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 232-244
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4022
Articles are hosted by Taylor and Francis Online.
The stability performance of the Economic Simplified Boiling Water Reactor (ESBWR) is studied with the downscaled GENESIS facility. The GENESIS design is based on fluid-to-fluid modeling and includes an artificial void reactivity feedback system for simulating the neutronic-thermal-hydraulic coupling. The experiments show that the ESBWR thermal-hydraulic oscillatory mode is very stable at nominal conditions, exhibiting a decay ratio DR = 0.12 and a remarkably low resonance frequency fres = 0.11 Hz. This result indicates a static pressure head-driven phenomenon since this frequency corresponds well to typical frequencies found for density wave oscillations traveling through the core plus chimney sections. For the reactor-kinetic oscillatory mode, we found a decay ratio DR = 0.30 and a resonance frequency fres = 0.75 Hz. This corresponds well to density wave oscillations traveling through the core indicating the instability mechanism is driven by the interplay between the core friction and the neutronic response due to void changes in the core. By comparing these results with those obtained with the TRACG computational code, it was found that they agree very well. In addition, the stability performance of the thermal-hydraulic and the reactor-kinetic mode is investigated for a wide range of conditions, confirming the existence of large margins to instabilities of the ESBWR design.