ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
C. P. Marcel, M. Rohde, T. H. J. J. Van der Hagen
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 232-244
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A4022
Articles are hosted by Taylor and Francis Online.
The stability performance of the Economic Simplified Boiling Water Reactor (ESBWR) is studied with the downscaled GENESIS facility. The GENESIS design is based on fluid-to-fluid modeling and includes an artificial void reactivity feedback system for simulating the neutronic-thermal-hydraulic coupling. The experiments show that the ESBWR thermal-hydraulic oscillatory mode is very stable at nominal conditions, exhibiting a decay ratio DR = 0.12 and a remarkably low resonance frequency fres = 0.11 Hz. This result indicates a static pressure head-driven phenomenon since this frequency corresponds well to typical frequencies found for density wave oscillations traveling through the core plus chimney sections. For the reactor-kinetic oscillatory mode, we found a decay ratio DR = 0.30 and a resonance frequency fres = 0.75 Hz. This corresponds well to density wave oscillations traveling through the core indicating the instability mechanism is driven by the interplay between the core friction and the neutronic response due to void changes in the core. By comparing these results with those obtained with the TRACG computational code, it was found that they agree very well. In addition, the stability performance of the thermal-hydraulic and the reactor-kinetic mode is investigated for a wide range of conditions, confirming the existence of large margins to instabilities of the ESBWR design.