ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Rainer Senger, Bill Lanyon, Paul Marschall, Stratis Vomvoris, Ai Fujiwara
Nuclear Technology | Volume 164 | Number 2 | November 2008 | Pages 155-168
Technical Paper | Tough206 | doi.org/10.13182/NT08-A4016
Articles are hosted by Taylor and Francis Online.
The Gas Migration Test (GMT) at the Grimsel Test Site underground laboratory in central Switzerland was designed to investigate gas migration through an engineered barrier system (EBS). The EBS consists of a concrete silo embedded in a sand/bentonite buffer emplaced in a silo cavern that intersects a shear zone in the surrounding granite host rock. The experiment was performed in a series of stages: (a) excavation of the access drift and silo cavern, (b) construction and instrumentation, (c) saturation of the EBS, (d) water tests, (e) long-term gas injection at different rates, (f) postgas water testing, (g) gas injection with a "cocktail" of gas tracers, and (h) depressurization and dismantling. A numerical model was developed for the design and analysis of the different stages and to describe the relevant phenomena associated with gas migration from a potential repository for transuranic waste.A numerical model of the GMT was implemented with the two-phase-flow code TOUGH2, representing the GMT silo with a multilayered radially symmetric mesh and the surrounding water-conducting granite shear zone with a two-dimensional vertical feature. The different stages of the experiment were simulated in sequence using the results of the previous stage as initial conditions for the subsequent stage. Two-phase-flow parameters for the EBS were derived from laboratory experiments on core samples of the different materials that comprise the EBS, while hydraulic properties of the sand/bentonite and of relevant interface zones were calibrated to the pressure responses in the silo and selected piezometers in the sand/bentonite. The results of the numerical modeling of the GMT experiment show that the main features and processes of the different stages of the experiment could be reasonably well reproduced. Following the initial calibration of effective properties from the water test response during stage 4, property changes during the subsequent test phase were calibrated as stress- or pressure-dependent permeability changes. During the gas injection phases, the pressure-dependent permeability change could be related to the minimum effective stresses along interfaces. The inferred coupled hydromechanical phenomena were implemented using pressure-dependent permeability relationships on interfaces at the top of the silo and between the sand/bentonite and the granite host rock. During the recovery sequence following the first injection gas phase, the calibrated decrease in permeability of the sand/bentonite above the silo was related to the pressure decline in the upper cavern, but there was no apparent stress change. However, the calibrated permeability reduction in the sand/bentonite was in the range of values measured during the EBS excavation. In addition, time-dependent permeability relationships were calibrated for the tunnel seal to account for the gradual decrease in water inflow from the upper cavern into the access tunnel and the drift.