ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Jiri Krepel, Ulrich Rohde, Ulrich Grundmann, Frank-Peter Weiss
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 34-44
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4006
Articles are hosted by Taylor and Francis Online.
The dynamics of the molten salt reactor (MSR), one of the Generation IV International Forum concepts, was studied. The graphite-moderated channel-type MSR was selected for numerical simulation. MSR, a liquid-fueled reactor, has specific dynamics with two physical peculiarities: The delayed neutron precursors are drifted by the fuel flow, and the fission energy is released directly into the coolant. Presently, there are few accessible numerical codes appropriate for MSR simulation; therefore, the DYN1D-MSR and DYN3D-MSR codes were developed based on the light water reactor dynamics code DYN3D. These allow calculation of one-dimensional and full three-dimensional transient neutronics in combination with parallel channel-type thermal hydraulics. The codes were validated with experimental results of the Molten Salt Reactor Experiment from Oak Ridge National Laboratory and applied to several transients typical for a liquid fuel system. Those transients were initiated by reactivity insertion, by cold or overfueled slugs, by the fuel pump start-up or shutdown, or by the blockage of selected fuel channels. In these considered transients, the response of MSR is characterized by the immediate change of the fuel temperature relative to the temperature at that power level. This causes fast insertion of feedback reactivity, which is negative for power-related temperature increase. On the other hand, the graphite response is slower, and its feedback coefficient depends on the core size and geometry. The addition of erbium to the graphite can ensure negative feedback and inherent safety features also for big low leakage cores. The DYN1D-MSR and DYN3D-MSR codes have been shown to be effective tools for MSR dynamics studies. The MSR response to the majority of transients is considered acceptable within safety margins as long as the graphite feedback coefficient is negative. A transient that is possibly an exception is a local channel blockage.