ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Selena Ng, Dominique Grenèche, Bernard Guesdon, Richard Vinoche, Marc Delpech, Florence Dolci, Hervé Golfier, Christine Poinot-Salanon
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 13-19
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4004
Articles are hosted by Taylor and Francis Online.
Introducing neptunium into the nuclear fuel cycle has been proposed in the past as a way to impede the diversion or the direct use of plutonium to fabricate a nuclear explosive device. This paper aims to technically analyze the industrial consequences should this proposal be implemented. Two scenarios are considered: (a) adding neptunium to fresh uranium oxide (UOX) fuel before irradiation in a light water reactor (LWR) and (b) separating neptunium together with plutonium from used UOX fuel and using this combined oxide to fabricate mixed oxide (MOX) fuel before subsequent irradiation in an LWR. In both cases, assembly calculations for a pressurized water reactor using fresh fuel doped with neptunium are presented for a wide range of neptunium proportions. The consequences on the core and fuel performance and the fuel cycle are analyzed. The analysis shows that while irradiating neptunium-doped UOX fuel can offer significant proliferation-resistance benefits because of the increased quantity of the plutonium isotope 238Pu in the discharged fuel, it entails heavy industrial penalties even at 1% Np content. The use of neptunium with MOX fuel is limited to 0.5% in order to maintain a negative void coefficient. At this proportion, it offers minimal increase in 238Pu content, and it is unlikely that detectability through gamma-ray emissions of the resulting plutonium-neptunium oxide mixture is increased. The fact that neptunium itself may pose a proliferation risk must be carefully weighed in any decision to use neptunium as a tool to increase proliferation resistance.