ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Webinar: MC&A and safety in advanced reactors in focus
Towell
Russell
Prasad
The American Nuclear Society’s Nuclear Nonproliferation Policy Division recently hosted a webinar on updating material control and accounting (MC&A) and security regulations for the evolving field of advanced reactors.
Moderator Shikha Prasad (CEO, Srijan LLC) was joined by two presenters, John Russell and Lester Towell, who looked at how regulations that were historically developed for traditional light water reactors will apply to the next generation of nuclear technology and what changes need to be made.
Michael L. Fensin, John S. Hendricks, Samim Anghaie
Nuclear Technology | Volume 164 | Number 1 | October 2008 | Pages 3-12
Technical Paper | Icapp '06 | doi.org/10.13182/NT08-A4003
Articles are hosted by Taylor and Francis Online.
As advanced reactor concepts challenge the accuracy of current modeling technologies, a higher-fidelity depletion calculation is necessary to model time-dependent core reactivity properly for accurate cycle length and safety margin determinations. The recent integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a completely self-contained Monte Carlo-linked depletion capability. Two advances have been made in the latest MCNPX capability based on problems observed in prereleased versions: continuous-energy collision density tracking and adequate fission yield selection.Prereleased versions of the MCNPX depletion code calculated the reaction rates for (n,2n), (n,3n), (n,p), and (n,) by matching the MCNPX steady-state 63-group flux with 63-group cross sections inherent in the CINDER90 library and then collapsing to one-group collision densities for the depletion calculation. The accuracy of this procedure is therefore dictated by the adequacy of the 63-group energy structure of the cross-section set to accurately capture the spectrum of a specific model. Different types of models would therefore require different types of cross-section energy group structure. MCNPX 2.6.A eliminates this dependency by using the continuous-energy reaction rates determined during the MCNPX steady-state calculation to calculate energy-integrated collision rates to be used by CINDER90.MCNPX 2.6.A now also determines the proper fission yield to be used by the CINDER90 code for the depletion calculation. The CINDER90 code offers a thermal, fast, and high-energy fission yield for each fissile isotope contained in the CINDER90 data file. MCNPX 2.6.A determines which fission yield to use for a specified problem by calculating the integral fission rate for the defined energy boundaries (thermal, fast, and high energy), determining which energy range contains the majority of fissions, and then selecting the appropriate fission yield for the energy range containing the majority of fissions.The MCNPX depletion capability enables complete, relatively easy-to-use depletion calculations in a single Monte Carlo code. This study focuses on the methodology development of the two improvements described here. Further improvements are under development to enhance the usefulness of this new capability.