ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Shurong Ding, Yongzhong Huo
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 416-425
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3999
Articles are hosted by Taylor and Francis Online.
A metal-matrix dispersion fuel plate is considered. Taking account of the actual geometry, a special three-dimensional representative volume element is developed according to the particle distributions, which might characterize not only the macro deformation along the thickness but also the micro stress-strain fields. An elastoplastic analysis using the finite element method is carried out for the thermal-mechanical behaviors induced only by the thermal effects. The distributions of the thermal stresses at the fuel particles and the matrix are given, and the effects of the surface heat transfer coefficients, the heat generation rates of the fuel particles, and the degraded conductivities of the fuel particles along with the burnup on the stresses and the size variations of the plate thickness are investigated. The research results indicate that the internal stress distributions are not spherically symmetrical. With increasing surface heat transfer coefficients, the first principal stresses at the particles and the matrix both fall, and the thickness increments decrease. The first principal stresses at the fuel particles and the matrix both grow with increasing heat generation rates, and the thickness variations linearly increase. With decrease of the thermal conductivities of the fuel particles, the first principal stresses at the matrix increase, and the relative stresses at the particles decrease.