ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Xing L. Yan, Tetsuaki Takeda, Tetsuo Nishihara, Kazutaka Ohashi, Kazuhiko Kunitomi, Nobumasa Tsuji
Nuclear Technology | Volume 163 | Number 3 | September 2008 | Pages 401-415
Technical Paper | Fission Reactors | doi.org/10.13182/NT08-A3998
Articles are hosted by Taylor and Francis Online.
A rupture of the primary piping in the helium-cooled and graphite-moderated high-temperature gas-cooled reactor (HTGR) represents a design-basis event that should not result in significant safety consequences. In such a loss-of-coolant event, the reactor would be shut down inherently, and the decay heat would be removed passively with the ultimate reactor temperature rise being less than the design limit. Still, an important concern for reactor safety continues to be graphite oxidation damage to the fuel and core should a major air ingress take place through the breached primary pressure boundary. Two major cases of air ingress are studied. The first case results from the rupture of a control rod or refuel access standpipe atop the reactor pressure vessel (RPV). To rule out the possibility of such a standpipe rupture, a design change is proposed in the vessel top structure. The feasibility of the modified vessel local structure is evaluated. The second case of air ingress results from the rupture of one or more main coolant pipes on the lower body of the RPV. Experiment and analysis are performed to understand the multiphased air ingress phenomena in the depressurized reactor. Accordingly, a new passive mechanism of sustained counter air diffusion is proposed and shown to be effective in preventing major air ingress through natural circulation in the reactor. The results of the present study are expected to enhance the HTGR safety and economics.