ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Gokul Vasudevamurthy, Travis W. Knight
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 321-327
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT08-A3991
Articles are hosted by Taylor and Francis Online.
Composite nuclear fuel consisting of uranium carbide (UC) fuel microspheres dispersed in an inert matrix is one of the fuel forms being actively considered for use in gas-cooled fast reactors (GFRs). High-density UC electrodes were required for the production of fuel microspheres by the rotating electrode method as an alternate method to the sol-gel particle production route. These compacts (to serve as electrodes) were fabricated by the exothermic combustion synthesis reaction of uranium hydride and graphite powders. Ignition of combustion synthesis was then followed by solid-state sintering at different temperatures of 1521, 1779, and 1929°C. During the course of testing the electrodes for microsphere production, it was found that the structural integrity of the electrodes and thus their suitability for microsphere production depended on the microstructural characteristics of the electrodes. Those produced at higher temperatures (1929°C) had higher densities (86.6% theoretical density) and lower open porosities (2.3%) and were shown to withstand the mechanical forces and thermal stresses imposed by this microsphere production method. The processing conditions were chosen to evaluate sintering characteristics of UC and to the extent possible to find the lowest possible process temperature. Here it is understood that the intended future GFR fuel form should involve recycled fuels including minor actinides (MAs). Concern over MA volatility in high-temperature processes thus motivated investigating the effects of lower processing temperatures. It was deduced from this study that a delicate balance exists between the processing parameters, the microstructural characteristics of the electrodes, and microsphere production.