ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Sule Ergun, Jason G. Williams, Lawrence E. Hochreiter, Hergen Wiersema, Marcel Slootman, Marek Stempniewicz
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 273-284
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT08-A3987
Articles are hosted by Taylor and Francis Online.
In this study, calculations were performed to simulate a postulated large-break loss-of-coolant accident for the High Flux Reactor (HFR) cooling system using the COBRA-TF computer code. COBRA-TF has been chosen for this analysis since it has suitable and validated two-phase flow models and critical heat flux (CHF) correlations for channels having small hydraulic diameters. Calculations have been performed to determine the CHF margins for the HFR. Six types of calculations were performed to provide a range of CHF margins. All COBRA-TF calculations indicate that margin does exist to the CHF limit for the small-hydraulic-diameter highest-power HFR channel. The range of margin is 2.1 to 1.3 times the nominal power of the highest power channel, depending on the boundary conditions and CHF correlation used. The range of margin identified in the HFR analysis is consistent with the margin values used in commercial nuclear power plants.