ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
B. K. Sapra, Y. S. Mayya, Arshad Khan, Faby Sunny, Sunil Ganju, H. S. Kushwaha
Nuclear Technology | Volume 163 | Number 2 | August 2008 | Pages 228-244
Technical Paper | Reactor Safety | doi.org/10.13182/NT08-A3983
Articles are hosted by Taylor and Francis Online.
An experimental nuclear aerosol test facility has been built at the Bhabha Atomic Research Centre for validating the aerosol behavior computer codes used in nuclear reactor safety assessment. Its essential components are the 10-m3 stainless steel test vessel, plasma torch aerosol generator, and aerosol instrumentation to study the aerosol characteristics. Studies have been conducted with metal/metal oxide aerosols in dry environments under varying turbulence conditions and the results have been compared with the predictions of NAUA (Mod 5) code. The code predictions were found to differ from the experimental observations. To explain the differences under calm conditions, a gravity-induced spatial stratification model was formulated and solved. It was found that NAUA prediction agrees fairly well with the depletion of total airborne mass given by this model. In the presence of turbulence, the code overestimated the airborne concentrations. This is attributed to the noninclusion of particle removal by inertial impaction. Accordingly, the deposition velocity formula used in the code was modified based on the Crump-Seinfeld approach. With this modification, the results of airborne mass depletion agreed quite well with the measured data. On the whole, the study provides validated modifications in the NAUA (Mod 5) code to include turbulence effects and a formulation of gravity-induced stratification of aerosols under calm conditions.