ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NuScale Energy Exploration Center opens at George Mason University
NuScale Power Corporation has opened another Energy Exploration (E2) Center—this one at George Mason University in Arlington, Va. Just last month, a NuScale E2 Center opened at South Carolina State University in Orangeburg, S.C. The newest E2 at George Mason is the company’s 11th center.
Olivier Jaquet, Charles Connor, Laura Connor
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 180-189
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3980
Articles are hosted by Taylor and Francis Online.
Because of the difficulty of describing the complex spatial and temporal patterns inherent to volcanism, the use of solely deterministic models is not sufficient for long-term estimation of volcanic hazards. In order to account for the intrinsic uncertainty of volcanism that occurs in space and time and with respect to event types and their intensity, the use of probabilistic models becomes quite natural for long-term hazard assessment. Here, we discuss a range of probabilistic approaches to forecast the future spatial distribution of volcanism, including kernel, adaptive kernel, and Cox process methods. An application to the volcanic arc of Tohoku illustrates the proposed methodology.