ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Olivier Jaquet, Charles Connor, Laura Connor
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 180-189
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3980
Articles are hosted by Taylor and Francis Online.
Because of the difficulty of describing the complex spatial and temporal patterns inherent to volcanism, the use of solely deterministic models is not sufficient for long-term estimation of volcanic hazards. In order to account for the intrinsic uncertainty of volcanism that occurs in space and time and with respect to event types and their intensity, the use of probabilistic models becomes quite natural for long-term hazard assessment. Here, we discuss a range of probabilistic approaches to forecast the future spatial distribution of volcanism, including kernel, adaptive kernel, and Cox process methods. An application to the volcanic arc of Tohoku illustrates the proposed methodology.