ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Lars Marklund, Anders Wörman, Joel Geier, Eva Simic, Björn Dverstorp
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 165-179
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3979
Articles are hosted by Taylor and Francis Online.
The topographical driving forces for groundwater on different spatial scales in several ways influence the performance of a repository for nuclear waste located at large depth in crystalline bedrock. We show that the relation between local topographical characteristics (topographical steepness and wavelengths) in the area of a repository (kilometer scale) and the large-scale (hundreds of kilometers) surroundings, together with repository depth, are the primary controls of residence time distributions and the discharge pattern of radionuclides released from an underground repository. In addition, the topography affects the groundwater flow at repository depth and, therefore, influences the long-time degradation of the repository. In the areas studied, all located in Sweden, the local topography mainly controls the groundwater flow down to a depth of ~500 m, which is the suggested depth of the Swedish repository. The importance of the large-scale topography increases with depth but even at depth where local-scale topography is dominant, the continental-scale topography affects length and depth of flowpaths as well as groundwater velocities. The impact of large-scale topography is particularly clear in areas where the steepness of local-scale landforms is relatively small. The study also shows that quaternary deposits (bedrock overburden) may have a significant impact on the overall residence times in the underground because of their hydraulic and sorption properties. This effect is further enhanced by the fact that flow paths originating from repository depth generally emerge in topographical lows with relatively deep layers of quaternary deposits. The findings of this study underscore the need to consider multiscale topographical characteristics as well as bedrock overburden in assessments of radiological consequences of underground repositories.