ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
G. Danko, J. Birkholzer, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 110-128
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3975
Articles are hosted by Taylor and Francis Online.
A thermal-hydrologic natural-ventilation model is configured for simulating temperature, humidity, and condensate distributions in the coupled domains of the in-drift airspace and the near-field rock mass in the proposed Yucca Mountain repository. The multiphysics problem is solved with MULTIFLUX, in which a lumped-parameter computational fluid dynamics (CFD) model is iterated with TOUGH2. The iterative process ensures that consistent boundary conditions are used on the drift wall in both the CFD and the TOUGH2 model-elements. The CFD solution includes natural convection, conduction, and radiation for heat, as well as moisture convection and diffusion for moisture transport with half waste package-scale details in the drift. The TOUGH2 solution for the rock mass is generalized with the use of the Numerical Transport Code Functionalization technique in order to include both mountain-scale heat and moisture transport in the porous and fractured rock, and fine half waste package-scale details at the drift wall. The method provides fast convergence on a personal computer computational platform. Numerical examples and comparison with a TOUGH2-based integrated model are presented.