ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Jan Marivoet, Eef Weetjens
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 74-84
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3971
Articles are hosted by Taylor and Francis Online.
This paper presents evaluations of the impact of six advanced fuel cycles, ranging from the present "once-through" fuel cycle in light water reactors to a gas-cooled fast reactor with fully recycling of all actinides, on geological disposal in a clay formation. Both the dimensions and the radiological consequences of a geological repository for the disposal of high-level radioactive waste (HLW) and spent fuel are estimated. After a 50-yr cooling time, the thermal output of the HLW arising from advanced fuel cycles is significantly lower than that of spent fuel. This allows the dimensions of the geological repository to be reduced. The impact of advanced fuel cycles on the radiological consequences in the case of the expected evolution scenario is rather limited. The maximum dose, which is expected to occur a few tens of thousands of years after the disposal of the waste, is essentially due to fission products, and their amount is approximately proportional to the heat generated by nuclear fission. An important contributor to the total dose is 129I; the amount of 129I going into a repository strongly depends on the fraction of spent fuel that is reprocessed. By considering the evolution of the radiotoxicity of the waste, it can be expected that the radiological consequences of human intrusions into a repository will be significantly lower in the case of waste arising from advanced fuel cycles.