ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Fergus G. F. Gibb, Karl P. Travis, Neil A. McTaggart, David Burley, Kevin W. Hesketh
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 62-73
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3970
Articles are hosted by Taylor and Francis Online.
Disposal in 4- to 5-km-deep boreholes offers a safe, secure, environmentally sound, and potentially economic solution for high-level radioactive wastes, including spent fuel and fissile materials. Three versions of such disposals are under investigation: two variants of low-temperature disposal for low-heat-generating wastes and a high-temperature one for wastes generating sufficient heat to partly melt the host rock. A numerical model for the conductive transfer of heat is used to calculate the spatial and temporal distribution of temperature in and around these disposals. Sample solutions are given for two cases of each of the disposal versions, and the outcomes are discussed in the context of their significance for the safety and viability of the disposal. It is concluded that one or other of the three versions of deep borehole disposal could accommodate almost any type of high-level waste.