ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Natalie Cannon is passionate about nuclear policy
Some people are born leaders, and some people make themselves leaders. Take Natalie Cannon, a fourth-year doctoral candidate in the Department of Nuclear and Radiological Engineering and Medical Physics at the Georgia Institute of Technology. She has been driven to succeed since she was a teenager in Southern California, when she was inspired by NASA’s Mars Exploration Program.
Fergus G. F. Gibb, Karl P. Travis, Neil A. McTaggart, David Burley, Kevin W. Hesketh
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 62-73
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3970
Articles are hosted by Taylor and Francis Online.
Disposal in 4- to 5-km-deep boreholes offers a safe, secure, environmentally sound, and potentially economic solution for high-level radioactive wastes, including spent fuel and fissile materials. Three versions of such disposals are under investigation: two variants of low-temperature disposal for low-heat-generating wastes and a high-temperature one for wastes generating sufficient heat to partly melt the host rock. A numerical model for the conductive transfer of heat is used to calculate the spatial and temporal distribution of temperature in and around these disposals. Sample solutions are given for two cases of each of the disposal versions, and the outcomes are discussed in the context of their significance for the safety and viability of the disposal. It is concluded that one or other of the three versions of deep borehole disposal could accommodate almost any type of high-level waste.