ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. A. Krakowski, R. L. Hagenson, G. E. Cort
Nuclear Technology | Volume 34 | Number 2 | July 1977 | Pages 217-241
Technical Paper | Reactor | doi.org/10.13182/NT77-A39699
Articles are hosted by Taylor and Francis Online.
The thermal-mechanical response of the Reference Theta-Pinch Reactor (RTPR) first wall was analyzed. The first wall problems anticipated for a pulsed, high-β fusion power plant can be ameliorated by either alterations in the physics operating point, materials reengineering, or blanket/first wall reconfiguration. Within the latter “configuration” scenario, a two-fold approach has been adopted for the thermal-mechanical portion of the RTPR first wall technology assessment. First, a number of new first wall configurations (bonded or unbonded laminated composites, all-ceramic structures, protective and/or sacrificial “bumpers”) were considered. Second, a more quantitative failure criterion, based on the developing theories of fracture mechanics, was identified. For each first wall configuration, transient heat transfer and thermoelastic stress calculations have been made. Two-dimensional finite element structural analyses have been made for a variety of mechanical boundary conditions. Only the Al2O3/Nb—1 Zr system has been considered. The results of this study indicated a wide range of design solutions to the pulsed thermal stress problem anticipated for the RTPR. The use of first wall bumpers, in particular, results in significant (a factor of ∼10) reduction in first wall thermal stresses, although simply reducing the insulator thickness also leads to acceptable stress levels. The means by which the first wall portion of the RTPR blanket segment is attached has a minor influence on the stress distribution, although more accurate two-dimensional thermal modeling of the first wall yields stresses that may be reduced by 40% of those predicted by the one-dimensional calculations used heretofore. Static fatigue life estimates of both all-ceramic and ceramic-metal first walls are in excess of five years for even the most severe conditions envisaged for the RTPR. Finally, relatively minor changes in the physics operating point were proven to reduce dramatically the RTPR first wall problem.