ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
F. L. Ribe
Nuclear Technology | Volume 34 | Number 2 | July 1977 | Pages 179-208
Technical Paper | Reactor | doi.org/10.13182/NT77-A39697
Articles are hosted by Taylor and Francis Online.
Since the first round of conceptual fusion reactor designs in 1973–1974, there has been considerable progress in design improvement. Two recent tokamak designs of the Wisconsin and Culham groups, with increased plasma beta and wall loading (power density), lead to more compact reactors with easier maintenance. The Reference Theta-Pinch Reactor has undergone considerable upgrading in the design of the first wall insulator and blanket. In addition, a conceptual homopolar energy storage and transfer system has been designed. In the case of the mirror reactor, there are design changes toward improved modular construction and ease of handling, as well as improved direct converters. Conceptual designs of toroidal-multiple-mirror, liner-compression, and reverse-field pinch reactors are also discussed. A design is presented of a toroidal multiple-mirror reactor that combines the advantages of steady-state operation and high-aspect ratio. The liner-compression reactor eliminates a major problem of radiation damage by using a liquid-metal first wall that also serves as a neutron-thermalizing blanket. The reverse-field pinch reactor operates at higher beta, larger current density and larger aspect ratio than a tokamak reactor. These properties allow the possibility of ignition by ohmic heating alone and greater ease of maintenance.