ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The current status of heat pipe R&D
Idaho National Laboratory under the Department of Energy–sponsored Microreactor Program recently conducted a comprehensive phenomena identification and ranking table (PIRT) exercise aimed at advancing heat pipe technology for microreactor applications.
Joel A. Kulesza, Roger L. Martz
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 284-295
Technical Paper | doi.org/10.1080/00295450.2016.1273711
Articles are hosted by Taylor and Francis Online.
Despite being one of the most widely used benchmarks for qualifying light water reactor (LWR) radiation transport methods and data, no benchmark calculation of the Oak Ridge National Laboratory (ORNL) pool critical assembly (PCA) pressure vessel wall benchmark facility (PVWBF) using MCNP6 with explicitly modeled core geometry exists. As such, this paper provides results for such an analysis. First, a criticality calculation is used to construct the fixed source term. Next, ADVANTG-generated variance reduction parameters are used within the final MCNP6 fixed source calculations. These calculations provide unadjusted dosimetry results using three sets of dosimetry reaction cross sections of varying ages (those packaged with MCNP6, from the IRDF-2002 multigroup library, and from the ACE-formatted IRDFF v1.05 library). These results are then compared to two different sets of measured reaction rates. The comparison agrees in an overall sense within 2% and on a specific reaction and dosimetry location basis within 5%. Except for the neptunium dosimetry, the individual foil raw calculation-to-experiment comparisons usually agree within 10% but are typically greater than unity. Finally, in the course of developing these calculations, geometry that has previously not been completely specified is provided herein for the convenience of future analysts.