ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
G. Danko, J. Walton, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 47-61
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3969
Articles are hosted by Taylor and Francis Online.
The nuclear waste storage concept according to the baseline design of the proposed high-level nuclear waste repository at Yucca Mountain is analyzed. The high-temperature storage concept, in which the emplacement area is heated above the boiling temperature of water, is subject to criticism on the basis of uncertainties due to nonlinear multiphysics processes in the rock mass and in the storage airspace. The storage environment around the nuclear waste containers is reexamined using a new thermal-hydrologic airflow model. The complex nature of the thermal-hydraulic behavior in a superheated waste repository is described with fewer simplifying assumptions than those used in the baseline design. The emplacement area in the mountain is described as an open system, in which the air pressure is connected to the barometric pressure through fractures, faults, and partially sealed drifts. The cyclic variation of the atmospheric pressure that affects the heat and mass transport processes in the near-field rock mass is also modeled. The implications of evaporation into the drift airspace are discussed, and a hypothesis of salt accumulation in the near-field rock mass is established. Model calculation is also presented for a below-boiling temperature storage concept that is easier to predict and has fewer anomalies. The price for a below-boiling temperature storage is the extended preclosure ventilation time period. However, as demonstrated for a trade-off, it is possible to design a repository with below-boiling temperatures and doubled waste inventory at the same time.