ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NuScale Energy Exploration Center opens at George Mason University
NuScale Power Corporation has opened another Energy Exploration (E2) Center—this one at George Mason University in Arlington, Va. Just last month, a NuScale E2 Center opened at South Carolina State University in Orangeburg, S.C. The newest E2 at George Mason is the company’s 11th center.
G. Danko, J. Walton, D. Bahrami
Nuclear Technology | Volume 163 | Number 1 | July 2008 | Pages 47-61
Technical Paper | High-Level Radioactive Waste Management | doi.org/10.13182/NT08-A3969
Articles are hosted by Taylor and Francis Online.
The nuclear waste storage concept according to the baseline design of the proposed high-level nuclear waste repository at Yucca Mountain is analyzed. The high-temperature storage concept, in which the emplacement area is heated above the boiling temperature of water, is subject to criticism on the basis of uncertainties due to nonlinear multiphysics processes in the rock mass and in the storage airspace. The storage environment around the nuclear waste containers is reexamined using a new thermal-hydrologic airflow model. The complex nature of the thermal-hydraulic behavior in a superheated waste repository is described with fewer simplifying assumptions than those used in the baseline design. The emplacement area in the mountain is described as an open system, in which the air pressure is connected to the barometric pressure through fractures, faults, and partially sealed drifts. The cyclic variation of the atmospheric pressure that affects the heat and mass transport processes in the near-field rock mass is also modeled. The implications of evaporation into the drift airspace are discussed, and a hypothesis of salt accumulation in the near-field rock mass is established. Model calculation is also presented for a below-boiling temperature storage concept that is easier to predict and has fewer anomalies. The price for a below-boiling temperature storage is the extended preclosure ventilation time period. However, as demonstrated for a trade-off, it is possible to design a repository with below-boiling temperatures and doubled waste inventory at the same time.