ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
NRC grants license for TRISO-X fuel manufacturing using HALEU
The Nuclear Regulatory Commission has granted X-energy subsidiary TRISO-X a special nuclear material license for high-assay low-enriched uranium fuel fabrication. The license applies to TRISO-X’s first two planned commercial facilities, known as TX-1 and TX-2, for an initial 40-year period. The facilities are set to be the first new nuclear fuel fabrication plants licensed by the NRC in more than 50 years.
P. Yarsky, Y. Xu, A. Ward, N. Hudson, T. Downar
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 265-283
Technical Paper | doi.org/10.1080/00295450.2016.1273707
Articles are hosted by Taylor and Francis Online.
On November 3, 2008, an unexpected drift of the last three of 177 control rods occurred at the Dresden Unit 3 boiling water reactor. The root cause of the control rod drift was the manner in which the hydraulic control units (HCUs) were isolated during the outage. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) performed a demonstration study of inadvertent control blade drift using RES-sponsored nuclear analysis tools. The smallest margin to recriticality was determined by calculating the control rod worths at each core state using the core simulator PARCS/PATHS and an innovative algorithm to identify the highest worth combination of rods. This study did not try to evaluate any correlation between drifting rods that may occur in a real plant due to the actual physical configuration of the system. The purpose of the analysis was to demonstrate the tools that could be used to analyze the situation if that information is known.
For the current purpose of this demonstration, Edwin Hatch Unit 1 Cycle 3 (H1C3) was selected as the reference core and cycle. Based on the results of these calculations, it was possible to determine the fraction of rod groups that would produce criticality consequences in each of these scenarios. The results confirmed several aspects of conventional thinking, such as the most reactive point being the beginning of the cycle at the coldest conditions. Further, with a single blade drifting out of the core, the analysis results confirm that shutdown margin is maintained. It was found that a small population (about 1%) of drift scenarios with two rods produced criticality consequences according to our best-estimate-plus-uncertainty method, while this fraction increases to about 3.5% for three rods and about 14% for four rods. The results of the study have confirmed the adequacy of the NRC control rod drift analysis methodology; however, the results are not generically applicable and apply only to H1C3.