ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
P. Yarsky, Y. Xu, A. Ward, N. Hudson, T. Downar
Nuclear Technology | Volume 197 | Number 3 | March 2017 | Pages 265-283
Technical Paper | doi.org/10.1080/00295450.2016.1273707
Articles are hosted by Taylor and Francis Online.
On November 3, 2008, an unexpected drift of the last three of 177 control rods occurred at the Dresden Unit 3 boiling water reactor. The root cause of the control rod drift was the manner in which the hydraulic control units (HCUs) were isolated during the outage. The U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) performed a demonstration study of inadvertent control blade drift using RES-sponsored nuclear analysis tools. The smallest margin to recriticality was determined by calculating the control rod worths at each core state using the core simulator PARCS/PATHS and an innovative algorithm to identify the highest worth combination of rods. This study did not try to evaluate any correlation between drifting rods that may occur in a real plant due to the actual physical configuration of the system. The purpose of the analysis was to demonstrate the tools that could be used to analyze the situation if that information is known.
For the current purpose of this demonstration, Edwin Hatch Unit 1 Cycle 3 (H1C3) was selected as the reference core and cycle. Based on the results of these calculations, it was possible to determine the fraction of rod groups that would produce criticality consequences in each of these scenarios. The results confirmed several aspects of conventional thinking, such as the most reactive point being the beginning of the cycle at the coldest conditions. Further, with a single blade drifting out of the core, the analysis results confirm that shutdown margin is maintained. It was found that a small population (about 1%) of drift scenarios with two rods produced criticality consequences according to our best-estimate-plus-uncertainty method, while this fraction increases to about 3.5% for three rods and about 14% for four rods. The results of the study have confirmed the adequacy of the NRC control rod drift analysis methodology; however, the results are not generically applicable and apply only to H1C3.