ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Fei Jia, Jufeng Li, Jianlong Wang, Yuliang Sun
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 219-224
Technical Note | doi.org/10.13182/NT16-6
Articles are hosted by Taylor and Francis Online.
A novel disc tubular reverse osmosis (DTRO) system was designed and applied for the removal of cesium ions from the simulated radioactive wastewater to enhance the concentration factor (CF), which is usually low with a conventional reverse osmosis system (about tenfold volume reduction). In this study, a three-stage structure was proposed to perform the decontamination and concentration separately for the radioactive wastewater treatment at different stages. This novel DTRO system makes it possible to achieve both high retention index (~99%) and CF (over 70) simultaneously. The system was operated at room temperature under ~4 MPa for stages I and II (permeate stages) and 6 to 8 MPa for stage III (concentrate stage). The wastewater processing capacity reached 450 ℓ/h, and only ~6 ℓ/h concentrate was produced. The DTRO system has the potential for application in the treatment of real radioactive wastewater produced in nuclear power plants.