ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Gary M. Stange, Michael Corradini, Robert Swader, George Petry, Thomas R. Mackie, Kevin W. Eliceiri
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 191-200
Technical Paper | doi.org/10.13182/NT16-107
Articles are hosted by Taylor and Francis Online.
Uranyl nitrate hexahydrate [UO2(NO3)2 · 6H2O] (UNH) holds interest as a potential nuclear reactor fuel for manufacturing the key medical isotope 99mTc through the production and subsequent decay of 99Mo. Fuel element design for such a production method requires knowledge of the thermal properties of the fuel material, particularly in the case of UNH, which has a significantly lower melting temperature than that of fuels being used currently. A system was designed to measure the thermal conductivity of UNH by an ASTM International standard thermal probe method. Measurements were made at four temperatures within the relevant range for the reactor system (25°C through 55°C) and with a variety of material preparations. With a fill gas of air, the results demonstrate a thermal conductivity at 25°C between 0.07 and 0.10 W · cm−1 · K−1. The results are the first step toward future studies that could lead to a more efficient reactor design with a heating source term capable of meeting the demand for 99Mo production while maintaining a safe and effective thermal margin.