ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Gary M. Stange, Michael Corradini, Robert Swader, George Petry, Thomas R. Mackie, Kevin W. Eliceiri
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 191-200
Technical Paper | doi.org/10.13182/NT16-107
Articles are hosted by Taylor and Francis Online.
Uranyl nitrate hexahydrate [UO2(NO3)2 · 6H2O] (UNH) holds interest as a potential nuclear reactor fuel for manufacturing the key medical isotope 99mTc through the production and subsequent decay of 99Mo. Fuel element design for such a production method requires knowledge of the thermal properties of the fuel material, particularly in the case of UNH, which has a significantly lower melting temperature than that of fuels being used currently. A system was designed to measure the thermal conductivity of UNH by an ASTM International standard thermal probe method. Measurements were made at four temperatures within the relevant range for the reactor system (25°C through 55°C) and with a variety of material preparations. With a fill gas of air, the results demonstrate a thermal conductivity at 25°C between 0.07 and 0.10 W · cm−1 · K−1. The results are the first step toward future studies that could lead to a more efficient reactor design with a heating source term capable of meeting the demand for 99Mo production while maintaining a safe and effective thermal margin.