ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
M. P. Sharma, A. K. Nayak
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 158-170
Technical Paper | doi.org/10.13182/NT15-127
Articles are hosted by Taylor and Francis Online.
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube–type, heavy water–moderated, and boiling light water–cooled natural-circulation–based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18, and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passages called subchannels. Transition from a single-phase-flow condition to a two-phase-flow condition occurs in the reactor rod bundle with increase in power. Prediction of the thermal margin of the reactor has necessitated the determination of intersubchannel mixing due to void drift. Void drift is due to redistribution of the non-equilibrium void fraction to attain an equilibrium void fraction. This redistribution occurs in the reactor rod bundle until it reaches the state of equilibrium void fraction. Hence, it is vital to evaluate void drift between subchannels of AHWR rod bundles.
In this paper, experiments were carried out to investigate the void drift phenomena in simulated subchannels of AHWR. The size of the rod and the pitch in the test section were the same as those of the actual rod bundle in the prototype. Three subchannels are considered in 1/12th of the cross section of the rod bundle. Water and air were used as the working fluid, and the experiments were carried out at atmospheric condition without the addition of heat. The void fraction in the simulated subchannels was varied from 0 to 0.8 under various ranges of superficial liquid velocities. The void drift between the subchannels was measured. The test data were compared with existing models in the literature. It was found that the existing models could predict the measured equilibrium void fraction in the rod bundle of the reactor within the range +8% to −14%.