ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
M. P. Sharma, A. K. Nayak
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 158-170
Technical Paper | doi.org/10.13182/NT15-127
Articles are hosted by Taylor and Francis Online.
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube–type, heavy water–moderated, and boiling light water–cooled natural-circulation–based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18, and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passages called subchannels. Transition from a single-phase-flow condition to a two-phase-flow condition occurs in the reactor rod bundle with increase in power. Prediction of the thermal margin of the reactor has necessitated the determination of intersubchannel mixing due to void drift. Void drift is due to redistribution of the non-equilibrium void fraction to attain an equilibrium void fraction. This redistribution occurs in the reactor rod bundle until it reaches the state of equilibrium void fraction. Hence, it is vital to evaluate void drift between subchannels of AHWR rod bundles.
In this paper, experiments were carried out to investigate the void drift phenomena in simulated subchannels of AHWR. The size of the rod and the pitch in the test section were the same as those of the actual rod bundle in the prototype. Three subchannels are considered in 1/12th of the cross section of the rod bundle. Water and air were used as the working fluid, and the experiments were carried out at atmospheric condition without the addition of heat. The void fraction in the simulated subchannels was varied from 0 to 0.8 under various ranges of superficial liquid velocities. The void drift between the subchannels was measured. The test data were compared with existing models in the literature. It was found that the existing models could predict the measured equilibrium void fraction in the rod bundle of the reactor within the range +8% to −14%.