ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
NRC v. Texas: Supreme Court weighs challenge to NRC authority in spent fuel storage case
The State of Texas has not one but two ongoing federal court challenges to the Nuclear Regulatory Commission that could, if successful, turn decades of NRC regulations, precedent, and case law on its head.
Michio Murase, Yoichi Utanohara, Takayoshi Kusunoki, Yasunori Yamamoto, Dirk Lucas, Akio Tomiyama
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 140-157
Technical Paper | doi.org/10.13182/NT16-96
Articles are hosted by Taylor and Francis Online.
We proposed prediction methods for countercurrent flow limitation (CCFL) in horizontal and slightly inclined pipes with one-dimensional (1-D) computations and uncertainty of computed CCFL. In this study, we applied the proposed methods to a full-scale pressurizer surge line [inclination angle θ = 0.6 deg, diameter D = 300 mm, and ratio of the length to the diameter (L/D) = 63] in a specific pressurized water reactor, performed 1-D computations and three-dimensional (3-D) numerical simulations, and found that uncertainties caused by effects of the diameter and fluid properties on CCFL were small. We also applied the proposed methods to experiments for hot-leg and surge line models (θ = 0 and 0.6 deg, D = 0.03 to 0.65 m, and L/D = 4.5 to 63) to generalize them, performed 1-D computations, and found that uncertainties caused by effects of θ and L on CCFL were large due to the setting error for θ and differences among experiments. This shows that a small-scale air-water experiment with the same θ and L/D as those in an actual plant is effective to reduce the uncertainty of CCFL prediction.