ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
February 2021
Nuclear Technology
January 2021
Fusion Science and Technology
November 2020
Latest News
Climate change needs an Operation Warp Speed
The government of the United States should throw its muscle behind ramping up a mammoth, rapid rollout of all forms of renewable energy through Operation Warp Speed, similar to what is being done with COVID-19, Clive Thompson writes in an Ideas column for Wired.
The rollout should include energy sources that we already know how to build—like solar and wind — but also experimental emerging sources such as geothermal and small nuclear, and cutting-edge forms of energy storage or transmission.
Tuomo Sevón
Nuclear Technology | Volume 197 | Number 2 | February 2017 | Pages 171-179
Technical Paper | dx.doi.org/10.13182/NT16-108
Articles are hosted by Taylor and Francis Online.
The water ingression mechanism can enhance the coolability of a pool of molten corium in containment during a severe accident. A water ingression model was added to the MELCOR code in 2015. The purpose of this work was to test the new model. It was found that the water ingression model performed satisfactorily in core-concrete–interaction experiments in which gas bubbles were released to the melt from decomposing concrete. The new model had little effect in the Small-Scale Water Ingression and Crust Strength (SSWICS) experiments that were done without gas bubbling through the melt. When applied to the Fukushima Daiichi Unit 1 accident, the water ingression model slowed down concrete ablation by 19% but did not quench the melt. Because the water ingression model was added to MELCOR so recently, the default treatment is still to use multipliers for the boiling heat transfer coefficient and thermal conductivity instead of the proper water ingression model. These default parameters significantly overestimated melt coolability in all the experiments that were calculated.