ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Ryan N. Bratton, Matt A. Jessee, William A. Wieselquist, Kostadin N. Ivanov
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 47-63
Technical Paper | doi.org/10.13182/NT16-75
Articles are hosted by Taylor and Francis Online.
The discharge rod internal pressure (RIP) and cladding hoop stress (CHS) distributions are quantified for Watts Bar Nuclear Unit 1 (WBN1) fuel rods by modeling core cycle design data, operation data, and as-built fuel enrichments and densities of each fuel rod in FRAPCON-3.5. A methodology is developed that tracks intercycle assembly movements and assembly batch fabrication information to build individual FRAPCON inputs for each evaluated WBN1 fuel rod. An alternate model for the amount of helium released from the zirconium diboride (ZrB2) integral fuel burnable absorber (IFBA) layer is derived and applied to FRAPCON output data to quantify the RIP and CHS for these types of fuel rods. SCALE/Polaris is used to quantify fuel rod–specific spectral quantities and the amount of gaseous fission products produced in the fuel for use in FRAPCON inputs. Fuel rods with ZrB2 IFBA layers (i.e., IFBA rods) are determined to have RIP predictions that are elevated when compared to fuel rods without IFBA layers (i.e., standard rods) despite the fact that IFBA rods often have reduced fill pressures and annular fuel pellets. The primary contributor to elevated RIP predictions at burnups less than and greater than 30 GWd/tonne U is determined to be the total fuel rod void volume and the amount of released fission gas in the fuel rod, respectively. Cumulative distribution functions (CDFs) are prepared from the distribution of RIP and CHS predictions for all standard and IFBA rods. The provided CDFs allow for the determination of the portion of WBN1 fuel rods that exceeds a specified RIP or CHS limit. Results are separated into IFBA and standard rods so that the two groups may be analyzed individually. FRAPCON results are provided in sufficient detail to enable the recalculation of the RIP while considering any desired plenum gas temperature, total void volume, or total amount of gas present in the void volume. A method to predict the CHS from a determined or assumed RIP is also proposed that is based on the approximately linear relationship between the CHS and the RIP. Finally, improvements to the computational methodology of FRAPCON are proposed.