ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
K. Samec
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 358-378
Technical Paper | Accelerators | doi.org/10.13182/NT08-A3962
Articles are hosted by Taylor and Francis Online.
A significant milestone in the Megapie project, the world's first liquid-metal neutron spallation source, was reached when its containment structure was proof tested in a full-scale liquid-metal leak experiment. The experimental apparatus used in testing the effects of a liquid-metal leak of lead-bismuth eutectic on a heavy-water-cooled confinement at full scale is described. Measurements taken during the experiment validated the design chosen for the containment, a water-cooled aluminium double hull, and demonstrated that the experimental apparatus was capable of reproducing an accidental leak. The data acquired during this one-off experiment can be used in the future to assess liquid-metal leaks analytically.In the event of a catastrophic failure in the spallation source, the experiment proved that the products of the ensuing liquid-metal leak would be safely contained and cooled. Furthermore, analytical methods used in predicting the outcome of a leak were validated. Indeed, transient fluid-dynamics, thermal and thermostructural calculations performed ahead of the test to predict temperatures and stresses in the aluminum containment and temperatures of the cooling loop agreed well with measurements.