ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Padala Abdul Nishad, Anupkumar Bhaskarapillai, Sankaralingam Velmurugan
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 88-98
Technical Paper | doi.org/10.13182/NT16-77
Articles are hosted by Taylor and Francis Online.
A nano titania–impregnated chitosan composite (TA-Cts) sorbent for antimony was prepared in the form of crosslinked stable beads and investigated in detail for its suitability for use in the dilute chemical decontamination (DCD) of nuclear power plants. Antimony uptake from the complexing DCD formulation and the irradiation stability of the prepared TA-Cts beads were analyzed in detail. The irradiation stability of the TA-Cts beads was studied up to a gamma dose of 50 kGy and compared with the irradiation stability of Tulsion® A33, a commercial nuclear-grade anion resin. The TA-Cts beads showed favorable radiation stability and high antimony uptake. The column performance of the TA-Cts beads for removing antimony in the presence of a large excess of iron was excellent. The sorbent preferentially removed antimony when a typical decontamination formulation containing a large excess of iron was passed through the column. The study demonstrates the high potential for the use of TA-Cts beads to remove antimony during the decontamination of nuclear reactors, particularly pressurized heavy water reactors.