ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
Padala Abdul Nishad, Anupkumar Bhaskarapillai, Sankaralingam Velmurugan
Nuclear Technology | Volume 197 | Number 1 | January 2017 | Pages 88-98
Technical Paper | doi.org/10.13182/NT16-77
Articles are hosted by Taylor and Francis Online.
A nano titania–impregnated chitosan composite (TA-Cts) sorbent for antimony was prepared in the form of crosslinked stable beads and investigated in detail for its suitability for use in the dilute chemical decontamination (DCD) of nuclear power plants. Antimony uptake from the complexing DCD formulation and the irradiation stability of the prepared TA-Cts beads were analyzed in detail. The irradiation stability of the TA-Cts beads was studied up to a gamma dose of 50 kGy and compared with the irradiation stability of Tulsion® A33, a commercial nuclear-grade anion resin. The TA-Cts beads showed favorable radiation stability and high antimony uptake. The column performance of the TA-Cts beads for removing antimony in the presence of a large excess of iron was excellent. The sorbent preferentially removed antimony when a typical decontamination formulation containing a large excess of iron was passed through the column. The study demonstrates the high potential for the use of TA-Cts beads to remove antimony during the decontamination of nuclear reactors, particularly pressurized heavy water reactors.