ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
The 2025 ANS election results are in!
Spring marks the passing of the torch for American Nuclear Society leadership. During this election cycle, ANS members voted for the newest vice president/president-elect, treasurer, and six board of director positions (four U.S., one non-U.S., one student). New professional division leadership was also decided on in this election, which opened February 25 and closed April 15. About 21 percent of eligible members of the Society voted—a similar turnout to last year.
David L. Luxat, Donald A. Kalanich, Joshua T. Hanophy, Randall O. Gauntt, Richard M. Wachowiak
Nuclear Technology | Volume 196 | Number 3 | December 2016 | Pages 684-697
Technical Paper | doi.org/10.13182/NT16-57
Articles are hosted by Taylor and Francis Online.
The Modular Accident Analysis Program (MAAP), Version 5 (MAAP5) and Methods of Estimation of Leakages and Consequences of Releases (MELCOR) are widely used integral plant response analysis computer codes. Both programs have been developed over the past 30 years for the purpose of simulating a range of beyond-design-basis accidents. The codes are benchmarked against numerous separate-effects experiments that reflect, to varying degrees, conditions expected to arise in light water reactor accidents. Such separate-effects tests, however, do not completely represent the novel physics that can arise through the interaction of multiple phenomena and physical processes at a reactor scale. Furthermore, aside from the Three Mile Island Unit 2 (TMI-2) core damage event, there is limited information available to evaluate reactor-scale behavior. Both MAAP5 and MELCOR have developed models to capture reactor-scale accident progression that, to a certain extent, extrapolate from separate-effects experiments, with assessment against the TMI-2 event only. Because of the limited information available to assess these extrapolated reactor-scale models, differences in MAAP5 and MELCOR code predictions do exist, most notably in the simulation of in-vessel core-melt progression. While these differences are not necessarily influential for the key metrics evaluated in probabilistic risk assessments, they can have a more pronounced impact on studies assessing the efficacy of accident management measures. This paper reports the first phase of a MAAP-MELCOR crosswalk designed to identify the key core-melt progression modeling differences. The results of this study highlight the impact that assumptions about reactor-scale, in-vessel core debris morphology have on (a) the potential for high temperatures to develop above the reactor core and in the main steam lines and (b) the magnitude and extent of the period for in-vessel hydrogen generation. These examples play critical roles in the evolution of challenges to the reactor pressure vessel pressure boundary and containment and are ultimately central to the evaluation of accident management effectiveness.