ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
B. Boer, A. M. Ougouag, J. L. Kloosterman, G. K. Miller
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 276-292
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3956
Articles are hosted by Taylor and Francis Online.
The PArticle STress Analysis (PASTA) code was written to evaluate stresses in coated particle fuel embedded in graphite of high-temperature reactors (HTRs). Existing models for predicting stresses in coated particle fuels were extended with a treatment of stresses induced by dimensional change of the matrix graphite and stresses caused by neighboring particles.PASTA was applied to two practical cases in order to evaluate the significance of this model extension. Thermal hydraulics, neutronics, and fuel depletion calculation tools were used to calculate the fuel conditions in these cases. Stresses in the first fuel loading of the High-Temperature Engineering Test Reactor (HTTR) and in the fuel of a 400-MW(thermal) pebble bed reactor were analyzed.It is found that the presence of the matrix material plays a significant role in the determination of the stresses that apply to a single isolated TRISO particle as well as in the transmittal of the stresses between particles in actual pebble designs.