ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
The journey of the U.S. fuel cycle
Craig Piercycpiercy@ans.org
While most big journeys begin with a clear objective, they rarely start with an exact knowledge of the route. When commissioning the Lewis and Clark expedition in 1803, President Thomas Jefferson didn’t provide specific “turn right at the big mountain” directions to the Corps of Discovery. He gave goal-oriented instructions: explore the Missouri River, find its source, search for a transcontinental water route to the Pacific, and build scientific and cultural knowledge along the way.
Jefferson left it up to Lewis and Clark to turn his broad, geopolitically motivated guidance into gritty reality.
Similarly, U.S. nuclear policy has begun a journey toward closing the U.S. nuclear fuel cycle. There is a clear signal of support for recycling from the Trump administration, along with growing bipartisan excitement in Congress. Yet the precise path remains unclear.
Koichi Asakura, Yoshiyuki Kato, Hirotaka Furuya
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 265-275
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3955
Articles are hosted by Taylor and Francis Online.
The characteristics and sinterability of UO2-PuO2 mixed oxide (MH-MOX) powder prepared by the microwave heating denitration method were measured and compared with those of UO2 (ADU-UO2) powder prepared by the ADU method. Furthermore, the degree of surface roughness and flowability of MH-MOX powder were evaluated and also compared with those of ADU-UO2 powder. The degree of surface roughness of ADU-UO2 powder calcined at temperatures >700°C significantly decreased, and its sintered density also dropped below 80% theoretical density. However, the degree of surface roughness and sinterability of MH-MOX powder calcined at 950°C were higher than those of ADU-UO2 powder. These results could be understood using the concept of Hüttig and Tamman temperatures, which is commonly cited for ceramic materials. The flowabilities of MH-MOX and ADU-UO2 powders decreased with an increase of compressibility, and they were categorized as non-free-flowing according to Carr's theory on powder flowability. It is, therefore, necessary for the mixed powder of MH-MOX powder, ADU-UO2 powder, and dry recycled MOX scrap powder to be granulated to provide a free-flowing feed to the pelletizing press in the MOX pellet fabrication process.