ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Koichi Asakura, Yoshiyuki Kato, Hirotaka Furuya
Nuclear Technology | Volume 162 | Number 3 | June 2008 | Pages 265-275
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT08-A3955
Articles are hosted by Taylor and Francis Online.
The characteristics and sinterability of UO2-PuO2 mixed oxide (MH-MOX) powder prepared by the microwave heating denitration method were measured and compared with those of UO2 (ADU-UO2) powder prepared by the ADU method. Furthermore, the degree of surface roughness and flowability of MH-MOX powder were evaluated and also compared with those of ADU-UO2 powder. The degree of surface roughness of ADU-UO2 powder calcined at temperatures >700°C significantly decreased, and its sintered density also dropped below 80% theoretical density. However, the degree of surface roughness and sinterability of MH-MOX powder calcined at 950°C were higher than those of ADU-UO2 powder. These results could be understood using the concept of Hüttig and Tamman temperatures, which is commonly cited for ceramic materials. The flowabilities of MH-MOX and ADU-UO2 powders decreased with an increase of compressibility, and they were categorized as non-free-flowing according to Carr's theory on powder flowability. It is, therefore, necessary for the mixed powder of MH-MOX powder, ADU-UO2 powder, and dry recycled MOX scrap powder to be granulated to provide a free-flowing feed to the pelletizing press in the MOX pellet fabrication process.