ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Natalie Cannon is passionate about nuclear policy
Some people are born leaders, and some people make themselves leaders. Take Natalie Cannon, a fourth-year doctoral candidate in the Department of Nuclear and Radiological Engineering and Medical Physics at the Georgia Institute of Technology. She has been driven to succeed since she was a teenager in Southern California, when she was inspired by NASA’s Mars Exploration Program.
In-Tae Kim, Hwan-Seo Park, Seong-Won Park, Eung-Ho Kim
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 219-228
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3950
Articles are hosted by Taylor and Francis Online.
Chloride salt wastes, which are supposed to be generated from a pyrochemical processing of spent nuclear fuels, are one of the wastes that are problematic to treat because of their high solubility in water and the relatively high volatility of some of their nuclides during a high-temperature thermal treatment. In this paper, we propose a new conditioning method, named the gel-route stabilization/solidification (GRSS) method, and present a practical example of its application to fabricate a monolithic waste form for LiCl waste. The GRSS process is carried out in four steps: gelation, drying, mixing with binder glass, and heat treatment (thermal conditioning). The gel-forming material system consists of sodium silicate as a gelling agent, phosphoric acid as a catalyst/stabilizer, and aluminium nitrate as a promoter. Through the drying step, LiCl, CsCl, and SrCl2 are chemically converted into phosphate or aluminosilicate forms, depending on the Si/P/Al molar ratio. The gel products are thermally stable, and there is little possibility of a Cs vaporization up to 1200°C. The final waste form, fabricated by thermally treating a mixture of the gel products and borosilicate glass frit, shows low leach rates (by a product consistency test method for 7 days), 10-2 to 10-3 g/m2day for Cs and 10-3 to 10-4 g/m2day for Sr, which are comparable or superior to that of a glass-bonded sodalite ceramic waste form. Also, the amount of waste loading is ~16%, which is double that of the zeolite process, to generate a lesser final waste volume for disposal. From these results, it could be concluded that the GRSS method can be considered as an alternative technology for a sound immobilization of chloride salt wastes.