ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Eung-Ho Kim, Geun-Il Park, Yung-Zun Cho, Hee-Chul Yang
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 208-218
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3949
Articles are hosted by Taylor and Francis Online.
In this work, a new approach to remove fission products including decay heat elements was proposed. This study aims at providing a new way to minimize the amount of waste salt for a repository, while removing the high decay heat fission products [Cs, Sr, Ba, and Y including other rare earth (RE) elements] from the waste salts generated during a chloride pyroprocessing procedure. These elements were removed in consecutive order from the pyroprocessing units. First, Cs could be released in the form of an oxide gas during voloxidation of UO2 and captured by a fly-ash filter. Then, Sr was recovered in the form of carbonate precipitates from the LiCl waste salt generated during the course of an electoreduction process, by using Li2CO3. Finally, RE elements plus yttrium in the spent LiCl-KCl waste salt generated during electrorefining were removed in the form of oxides (or oxychlorides) by using an oxygen sparging method. It was confirmed that the removal yields of each element were ~90% for Cs at ~1473 K, >99% for Sr at a molar ratio of [Li2CO3/SrCl2 = 3], and >99% for the RE elements plus yttrium. Using these successes as a basis, a reference flow sheet for removing the high decay heat elements from pyroprocessing units is presented in this work. Also, a salt regeneration system to minimize the amount of waste salt is proposed in this study.