ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Natalie Cannon is passionate about nuclear policy
Some people are born leaders, and some people make themselves leaders. Take Natalie Cannon, a fourth-year doctoral candidate in the Department of Nuclear and Radiological Engineering and Medical Physics at the Georgia Institute of Technology. She has been driven to succeed since she was a teenager in Southern California, when she was inspired by NASA’s Mars Exploration Program.
Jin-Mok Hur, Tack-Jin Kim, In-Kyu Choi, Jae Bum Do, Sun-Seok Hong, Chung-Seok Seo
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 192-198
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3947
Articles are hosted by Taylor and Francis Online.
The chemical behavior of lanthanide oxides has been studied both for the electrolytic reduction process and the electrorefining process. At high concentration of Li2O in LiCl, lanthanide oxides reacted with Li2O to form mixed oxides, LiLnO2 (Ln = lanthanides), which decomposed to the starting materials at relatively low Li2O concentration. The chemical behavior of lanthanide oxides under the condition of electrorefining process was investigated by optical fiber spectrophotometry and X-ray diffraction. Lanthanide oxides reacted with U3+ to produce Ln3+ and UO2. The solubility of lanthanide oxides was measured under the electrolytic reduction and the electrorefining condition. All of the lanthanide oxides except Eu2O3 had relatively low solubility values in LiCl-KCl eutectic mixture at 450°C. Electrochemical behavior of Br-, I-, and Se2- in LiCl was also investigated by cyclic voltammetry and by X-ray diffraction. All of the anions reacted with platinum anode and gave platinum compounds.