ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Yoshiharu Sakamura, Takashi Omori, Tadashi Inoue
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 169-178
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT162-169
Articles are hosted by Taylor and Francis Online.
The electrochemical reduction process has been recently developed for converting oxide nuclear fuels to metals. In order to characterize the reduction mechanism and to investigate appropriate conditions for improving the reduction rate, several reduction tests were conducted in a LiCl-Li2O electrolyte at 650°C using various types of cathode baskets containing 10 to 100 g of UO2. The reduction progressed from the outside to the center of the cathode basket, and the reduction rate might be determined by the transportation of oxygen ion to the bulk salt. It was verified that feeding in small UO2 particles and reducing the thickness of the UO2 layer in the cathode basket improved the reduction rate. The completion of UO2 reduction was indicated by the open circuit potential of the cathode basket exhibiting lithium deposition potential for a long time. A salt distillation test was conducted using the reduction product comprising a mixture of porous uranium metal particles and the electrolyte. The reduction product loaded in an yttria crucible was heated to 1400°C in an argon stream. The residue in the crucible consisted of a uranium metal ingot and a small amount of dross. The adhering LiCl seemed to be completely removed. Consequently, it was demonstrated in the electrochemical reduction followed by the salt distillation that a uranium metal ingot could be produced from the UO2 feed with a high degree of efficiency.