ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Yoshiharu Sakamura, Takashi Omori, Tadashi Inoue
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 169-178
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT162-169
Articles are hosted by Taylor and Francis Online.
The electrochemical reduction process has been recently developed for converting oxide nuclear fuels to metals. In order to characterize the reduction mechanism and to investigate appropriate conditions for improving the reduction rate, several reduction tests were conducted in a LiCl-Li2O electrolyte at 650°C using various types of cathode baskets containing 10 to 100 g of UO2. The reduction progressed from the outside to the center of the cathode basket, and the reduction rate might be determined by the transportation of oxygen ion to the bulk salt. It was verified that feeding in small UO2 particles and reducing the thickness of the UO2 layer in the cathode basket improved the reduction rate. The completion of UO2 reduction was indicated by the open circuit potential of the cathode basket exhibiting lithium deposition potential for a long time. A salt distillation test was conducted using the reduction product comprising a mixture of porous uranium metal particles and the electrolyte. The reduction product loaded in an yttria crucible was heated to 1400°C in an argon stream. The residue in the crucible consisted of a uranium metal ingot and a small amount of dross. The adhering LiCl seemed to be completely removed. Consequently, it was demonstrated in the electrochemical reduction followed by the salt distillation that a uranium metal ingot could be produced from the UO2 feed with a high degree of efficiency.