ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim, S. W. Park
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 135-143
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3940
Articles are hosted by Taylor and Francis Online.
The conventional electrorefiners to treat a metallic spent fuel equipped with a steel cathode have a sticking characteristic that hinders their overall processing efficiency. The critical question in order to enhance their throughput is how to decrease the sticking coefficient of the cathode. In order to realize this purpose, the conventional steel cathode was replaced with a graphite one. The graphite cathode exhibited self-scraping behavior in which the electrodeposited uranium dendrite falls from the cathode surface on its own without any kind of mechanical operation such as a scraping and rotation of the electrode. This self-scraping phenomenon of the graphite cathode was interpreted to be due to the formation of a uranium graphite intercalation compound. In this self-scraping mechanism, uranium atoms elongate at the graphite's outermost layer by an intercalation reaction, so the deposited uranium dendrite falls off spontaneously as the gravitational force exceeds the bonding strength of the layers. Based on our preliminary work, a self-scraping should increase the efficiency of an electrorefiner due to the elimination of a mechanical scraping as well as the electrolytic stripping steps of the cathode.