ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
J. H. Lee, Y. H. Kang, S. C. Hwang, J. B. Shim, E. H. Kim, S. W. Park
Nuclear Technology | Volume 162 | Number 2 | May 2008 | Pages 135-143
Technical Paper | First International Pyroprocessing Research Conference | doi.org/10.13182/NT08-A3940
Articles are hosted by Taylor and Francis Online.
The conventional electrorefiners to treat a metallic spent fuel equipped with a steel cathode have a sticking characteristic that hinders their overall processing efficiency. The critical question in order to enhance their throughput is how to decrease the sticking coefficient of the cathode. In order to realize this purpose, the conventional steel cathode was replaced with a graphite one. The graphite cathode exhibited self-scraping behavior in which the electrodeposited uranium dendrite falls from the cathode surface on its own without any kind of mechanical operation such as a scraping and rotation of the electrode. This self-scraping phenomenon of the graphite cathode was interpreted to be due to the formation of a uranium graphite intercalation compound. In this self-scraping mechanism, uranium atoms elongate at the graphite's outermost layer by an intercalation reaction, so the deposited uranium dendrite falls off spontaneously as the gravitational force exceeds the bonding strength of the layers. Based on our preliminary work, a self-scraping should increase the efficiency of an electrorefiner due to the elimination of a mechanical scraping as well as the electrolytic stripping steps of the cathode.